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In this paper, we study asymptotic properties of rational functions that inter-
polate the exponential function. The interpolation is performed with respect to a
triangular scheme of complex conjugate points lying in bounded rectangular
domains included in the horizontal strip |Im z|<2?. Moreover, the height of these
domains cannot exceed some upper bound which depends on the type of rational
functions. We obtain different convergence results and precise estimates for the
error function in compact sets of C that generalize the classical properties of Pade�
approximants to the exponential function. The proofs rely on, among others,
Walsh's theorem on the location of the zeros of linear combinations of derivatives
of a polynomial and on Rolle's theorem for real exponential polynomials in the
complex domain. � 2001 Academic Press
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error estimates.

1. INTRODUCTION

The rational interpolation problem, also known as the Cauchy�Jacobi
interpolation problem, consists in finding a rational function P�Q of type
(m, n) (i.e., deg P=m, deg Q=n) say, which takes prescribed values at
m+n+1 given points of the complex plane, for example the values of
some function f. It may happen that no solution to this problem exists, due
to interpolation defects, but its linearized version, which consists in finding
P and Q such that Qf &P vanishes at the above m+n+1 points, always
admits a non-trivial solution. From a computational point of view, the
seeked rational functions can be represented in many different ways, for
example in terms of Loewner determinants or Thiele continued fractions,
and are explicitly determined by solving a structured linear system of
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equations. There has been many investigations about how to perform these
computations via efficient and reliable algorithms, see e.g. [9] and the
bibliography therein.

In this paper, we shall be concerned with the analytic aspect of this
problem, namely the convergence behavior of the interpolants as m+n � �.
We review some of the results concerning convergence of rational inter-
polants, and in particular of Pade� approximants that, as well-known,
correspond to interpolation points all lying at the origin. The reader may
also consult [26] which contains many results in the same connection.

To begin with, families of approximants simpler than rational inter-
polants to analytic functions, such as polynomial interpolants or rational
interpolants with prescribed poles, have been studied in great detail in
[33]. Their convergence can be directly derived from the well-known
Hermite representation formula. For rational interpolants with free poles,
the situation is more intricate. Indeed, the possible occurrence of spurious
poles that do not reflect the singularities of the underlying function may
locally destroy convergence. Hence, usually, only results weaker than
uniform convergence can be obtained. Convergences in measure or in
capacity are the appropriate notions that are used e.g. in the Nuttall�
Pommerenke theorem. Roughly speaking, this theorem asserts that spurious
poles only disrupt convergence in sets of small capacity. It was first proved
for Pade� approximants to meromorphic functions [19], then to any single-
valued analytic functions with singular sets of capacity zero [22], and also
to functions of fast rational approximability [7]. It was subsequently
generalized to rational interpolants by Karlsson and Wallin [11, 32].
Examples in [13] and [23] show that, when considering arbitrary single-
valued analytic functions, the assumption of singular sets of zero capacity
in the Nuttall�Pommerenke theorem is essential.

Concerning uniform convergence, the famous conjecture of Baker�
Gammel�Wills has been proposed:

Let f be meromorphic in |z|<1, and analytic at 0. Then there exists an
infinite sequence I of positive integers such that

lim
n # I

n � �
[n�n](z)= f (z),

locally uniformly in |z|<1, omitting poles of f, where [n�n] denotes the Pade�
approximant to f of type (n, n).

In [31], an example of an entire function is constructed which shows
that, in general, the convergence cannot hold for the whole sequence
([n�n])n # N . The above conjecture has been proved for a class of entire
functions with fast decreasing Taylor coefficients, hence for most entire
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functions in the sense of category, since the above class is dense in the
space of entire functions [14]. If rational interpolation rather than Pade�
approximation is allowed, then by a result of Levin [12], for any function
f analytic in |z|<1, there exists an infinite triangular scheme A of points
in |z|<1 such that

lim
n � �

Rn, n( f, A, z)= f (z),

locally uniformly in |z|<1, where Rn, n denotes the rational interpolant of
type (n, n) to f with respect to the points of the scheme A. For entire
functions that admit sufficiently rapid and regular decay of errors of best
approximation, Theorem 7.4 in [15] asserts locally uniform convergence in
C of rational interpolants with respect to any scheme of points (ak, j)

k
j=1 in

a compact set, satisfying for some \>0,

lim
k � �

`
k

j=1

|z&ak, j |
1�k=|z|, |z|�\.

There are essentially only two special classes of functions which are known
to admit nice properties with respect to Pade� approximation, or more
generally with respect to rational interpolation. These two classes consist of
Markov functions on the one hand and of Polya frequency series on the
other hand.

The convergence of Pade� approximants to Markov functions, i.e., to
functions of the form

|
d+(t)
t&z

,

where + is a positive measure with compact support on R, goes back to
Markov himself [17] and was formulated in terms of Chebyshev continued
fractions. The convergence has been extended to rational interpolants in
[8] and this last result was subsequently refined and generalized in [28].
Recently, sharp asymptotic error estimates for rational interpolants to
Markov functions whose measures are sufficiently regular, i.e. satisfy Szego�
condition, have been derived from the corresponding strong asymptotics
for orthonormal polynomials with varying weights, cf. [29] and [27].

Let us now turn to the case of the exponential function. The Pade�
approximants to ez were first studied by Hermite in connection with his
proof of the transcendence of e. Then, Pade� , a student of Hermite, took up
again the investigation of these approximants and proved their convergence
to the exponential function. One may consult [20] where a proof of the
separated convergence of the numerator and the denominator is also given.
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These results have been generalized in [1] to the class of Polya frequency
series, that is functions of the type

Cz*e#z `
�

i=1

(1+: iz)<`
�

i=1

(1&;i z),

where C�0, * # N, #�0, :i�0, ;i�0, � (:i+;i)<�.
From a practical point of view, rational approximations to the exponen-

tial function are relevant to the design and analysis of numerical methods
for stiff ordinary differential equations. In this connection, the theory of
order stars, that is sets [z # C : |R(z)|>| f (z)|] where R denotes a rational
approximation to f (z) (which may be the exponential function or some
more general function), was started in [34] and studied in a series of
papers, see [10] for a detailed account of the theory. The geometry of an
order star gives, via the argument principle, knowledge about structural
properties of the approximating function in an easy and natural way, but
quantitative informations such as the magnitude of the error of approxima-
tion cannot be derived from this approach. Besides of these results, precise
estimates on the location of the zeros and poles of the approximants, which
also have applications to the numerical analysis of differential equations,
were obtained in a well-known series of papers (cf. [24, 25], and the biblio-
graphy therein).

Rational interpolants to the exponential function with interpolation
points all lying in some compact interval of the real axis were studied in
[4, 5] in relation with the Meinardus conjecture. The above mentioned
classical properties of Pade� approximants to the exponential function were
generalized to the case of real interpolation points in [2]. The problem of
further generalizing the result of convergence as well as the asymptotic
error estimates to the case of complex interpolation points was contributed
by the authors of [2] in the open problems session at the 1994 conference
on computational methods and function theory held at the university Sains
Malaysia, Penang. In the present paper, this problem is partially solved,
since the interpolation points are conjugate and lie in horizontal strips of
arbitrary length, but with height less than 4?. Moreover, the height of these
strips is bounded above by some number depending on the asymptotic
behavior of the degrees of the interpolants (see condition (2.3), respectively
condition (2.7) when the sequence of interpolants is ray). The method of
proof is based on ideas which were developed in [2] and [3, Section 5].
The new ingredient consists of an analog of Rolle's theorem that holds for
real exponential polynomials in the complex plane [35]. Then, it becomes
possible to apply the method used in [2], though, here, Newman's method
relating complex and real interpolants to ez (cf. [18, Lecture V]) has also
to be added as a supplementary component of the proof. This analysis,
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which is performed in Section 4, leads to a convergence theorem and
estimates of the error function for interpolants with complex points
generalizing those obtained in [2] for real interpolation points.

2. NOTATIONS AND MAIN RESULTS

Let \, p and l be three positive real numbers. Throughout, T\ and
D(0, \) will respectively denote the circle of radius \ and the closed disk of
radius \, both centered at the origin. Also we denote by E\, p the ellipse
such that

E\, p :={x+iy :
x2

p
+ y2=\2=

and F\, p the closed interior of this ellipse; that is

F\, p :={x+iy :
x2

p
+ y2�\2= .

Hence, in particular, F\, 1=D(0, \). Moreover, we set

Ll, \, p :=[x+iy : &l�x�l, &\� y�\] _ (F\, p&l ) _ (F\, p+l ),

so that Ll, \, p is the bounded strip consisting of the interior of a rectangle
of dimensions 2l_2\, centered at the origin, whose left and right sides have
been replaced with semi-ellipses of half-axis \ and - p \.

Theorem 2.1. Let B(m+n) :=[z (m+n)
k ]m+n

k=0 , m=m& , n=n& be a triangular
sequence of not necessarily distinct complex interpolation points possessing
the symmetry property B(m+n)=B(m+n) (i.e. non-real points in B(m+n) only
appear in conjugated pairs) contained in the domain Ll, \, 1 , 0<\<2?, and
such that

lim
& � �

m&+n&=�. (2.1)

Denote by Rm, n=Pm, n �Qm, n the multipoint Pade� approximant or linearized
rational interpolant of type (m, n) to ez in B(m+n) such that

Qm, n(z) ez&Pm, n(z)=O(|m+n+1(z)), (2.2)
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where

|m+n+1(z)= `
m+n

k=0

(z&z (m+n)
k ).

Assume that the sequence (m& , n&) satisfies

4 \1&
\
2

cot
\
2+< inf

&�&0

max \ n&+1
m&+2

,
m&+1
n&+2 + , (2.3)

where &0 is some positive integer. Then, the following four assertions hold true:

(i) For & large, the polynomials Pm, n and Qm, n such that (2.2) holds
are of exact degree m and n respectively.

(ii) All the zeros and poles of Rm, n tend to infinity, as & becomes large.
In particular, for & large, no poles of Rm, n lie in the bounded strip Ll, \, 1

where interpolation takes place, hence, dividing (2.2) by Qm, n , we get that
Rm, n is a true rational interpolant to ez in B(m+n) satisfying

ez&Rm, n(z)=O(|m+n+1(z)).

(iii) As & � �,

Rm& , n&
(z) � ez, (2.4)

locally uniformly in C.

(iv) If, in addition, (m, n) is a ray sequence,

lim
& � �

m&

n&
=* (0�*�+�), (2.5)

then the numerator and denominator converge separately, that is, as & � �,

Pm& , n&
(z) � e*z�(1+*) and Qm& , n&

(z) � e&z�(1+*) (2.6)

locally uniformly in C, where Qm& , n&
is normalized so that Qm& , n&

(0)=1.
Note that if (2.5) holds, then condition (2.3) reduces to

4 \1&
\
2

cot
\
2+<max(*, 1�*). (2.7)
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Remarks. First, assertion (i) is equivalent to the fact that, for & large,
the exponential polynomial Qm, n(z) ez&Pm, n(z) cannot have more than
m+n+1 zeros in Ll, \, 1 . In the terminology of rational approximation theory,
this property would usually be rephrased by saying that the exponential
function is normal in the domain Ll, \, 1 . Second, note that the conditions
(2.3) and (2.7) give a constraint on the height \ but not on the length l of
the domain Ll, \, 1 where interpolation takes place. Third, in the case
corresponding to the classical Montessus de Ballore theorem (i.e. the
degree n is fixed while m tends to infinity, or conversely m is fixed and n
tends to infinity), condition (2.7) is void. Hence, in this case, all the asser-
tions of Theorem 2.1 hold with respect to interpolation in any domain
Ll, \, 1 , \<2?. On the opposite, diagonal ray sequences (m, n) such that
m�n � 1 correspond to the most stringent condition on \, namely

4 \1&
\
2

cot
\
2+<1,

that is \<1.689... .
For simplicity, we shall usually omit the subscript & in the sequel, writing

m instead of m& and n instead of n& . In the next proposition, we present
estimates on the zeros and poles of Rm, n .

Proposition 2.2. Let \~ =\+l so that \~ equals half the diameter of the
domain Ll, \, 1 . Then, with the same assumptions as in Theorem 2.1, all zeros
:(n)

k of Qm, n satisfy

m+1&2\~ +O(1�(m+n))�|: (n)
k |, k=1, ..., n.

Symmetrically, all zeros ; (m)
j of Pm, n satisfy

n+1&2\~ +O(1�(m+n))�|; (m)
j |, m�1, j=1, ..., m.

Moreover, all zeros : (n)
k and ; (m)

j lie within a corona

(m+n) #&2\~ +O(1�(m+n))

�|z|�m+n+4�3+2\~ +O(1�(m+n)), m�1,

where #&0.278 is the unique positive root of #e1+#=1, and respectively
remain within 2\~ units distance from the zeros of the Pade� denominator and
numerator to the exponential function.

The convergence asserted in Theorem 2.1 can be further estimated as
follows.
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Theorem 2.3. Let B(m+n), m=m& , n=n& and Rm, n be as in Theorem
2.1, where it is assumed that (2.1), (2.2), (2.5), and (2.7) hold. For K/C a
compact set, define

c0=min
z # K

|ez|, c1=max
z # K

|ez|,

and put

C0=e&2\~ c2�(1+*)
0 , C1=e2\~ c2�(1+*)

1 ,

where \~ =\+l. Then, for any positive real number :<1, there exists a
positive integer L such that the rational interpolants Rm, n(z) to ez satisfy for
all z # K and m+n�L,

:C0 `
m+n

k=0

|z&z (m+n)
k |�$&1

m, n |ez&Rm, n(z)|

�
C1

:
`

m+n

k=0

|z&z (m+n)
k |, (2.8)

where

$m, n :=
m ! n !

(m+n)! (m+n+1)!
. (2.9)

From Theorem 2.3 we can deduce absolute error bounds which do not
depend on a particular ray sequence, namely:

Theorem 2.4. Let B(m+n), m=m& , n=n& and Rm, n be as in Theorem
2.1, where it is assumed that (2.1), (2.2), and (2.3) hold. For K/C a
compact set, let c0 and c1 be as in Theorem 2.3. Define m0 to be c2

0 if c0�1
and to be 1 otherwise. In a symmetric manner, let m1 be c2

1 if c1�1 and 1
otherwise. Then, for any positive real number :<1, there exists a positive
integer L depending only on \, K, and : such that any rational interpolant
Rm, n(z) of type (m, n) to ez in m+n+1 points of Ll, \, 1 satisfies for all z # K
and m+n�L,

:e&2\~ m0 `
m+n

k=0

|z&z (m+n)
k |�$&1

m, n |ez&Rm, n(z)|

�
e2\~ m1

:
`

m+n

k=0

|z&z (m+n)
k | , (2.10)

where \~ =\+l and $m, n is defined by (2.9).
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Remark. The previous bounds are sharp except for the factors e&2\~ and
e2\~ in the left and right hand sides of (2.10). Nevertheless, the sharp
estimates cannot include factors larger than e&\~ nor smaller than e\~ in
place of e&2\~ and e2\~ respectively. This can be seen from considering the
exact asymptotics for the classical Pade� approximants in a ray sequence
satisfying (2.5) at some point z=_+it, namely

|ez&Rm, n(z)|=
m ! n!

(m+n)! (m+n+1)!
|z|m+n+1 e2_�(1+*)(1+o(1)), (2.11)

see [6, eq. (5.5) p. 138], or take \~ =0 in (2.8). Replacing z by z&!, ! some
complex number, in (2.11) gives asymptotics at z for the Pade� approximant
to ez shifted at !. Letting the point ! and the parameter * vary in [&\~ , \~ ]
and in [0, +�] respectively leads to the above observations about the
sharpness of (2.10). We refer to the discussion after Theorem 2.3 in [2] for
some more details.

The results of Theorems 2.1, 2.3 and 2.4 are similar to those of [2]
which considers the case of real interpolation points. They are also similar
to those of [3, Theorem 5.1] that are established for a special class of
rational interpolants to the exponential function in the unit disk, namely
H2 rational approximants of type (n&1, n), n�1.

3. PRELIMINARIES

To prove our results, several ingredients, borrowed from the literature,
will be necessary. We list them now along with some references. The first
one is a theorem by Walsh about the location of roots of certain combina-
tions of polynomials and their derivatives.

Theorem 3.1 (cf. [16, Theorem 18.1]). Let

f (z)= :
n

j=0

ajz j, g(z)= :
n

j=0

bj z j=bn `
n

j=1

(z&;j),

and

h(z)= :
n

j=0

(n& j)! bn& j f ( j)(z).

If all the zeros of f (z) lie in a circular region A, then all the zeros of h(z)
lie in the point set C consisting of n circular regions obtained by translating
A in the amount and direction of the vectors ;j .
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The second result by Trefethen concerns the asymptotic rate of the error
in uniform best rational approximation to ez on a disk. It was obtained by
applying a method of Braess.

Theorem 3.2 (cf. [30]). Let m, n�0 be integers, and let Em, n(ez, R)
denote the error in rational best uniform approximation of type (m, n) to ez

on the disk |z|�R. Then, as m+n � �,

Em, n(ez, R)=$m, n Rm+n+1(1+o(1)),

where $m, n is defined as in Theorem 2.3.

The next result connects rational interpolants of the exponential function
on a disk and on a segment, and was derived in [18]. One may also find
a proof in [3], [6], or [21].

Theorem 3.3 (Technique of Newman). Let R>0 be a fixed real number,
P�Q a rational function of type (m, n) with real coefficients, and define

P� (x, R)=|P(R`)|2, Q� (x, R)=|Q(R`)|2, |`|=1, x=Re(`). (3.1)

Then P� (x, R) and Q� (x, R) are polynomials in x and P� (x, R)�Q� (x, R) is again
of type (m, n). Assume the following three assertions hold:

(i) The polynomial Q(z) has no zeros on [ |z|�R].

(ii) For any complex number z of modulus R, we have

|ez&P�Q(z)|<2 |ez|.

(iii) P�Q interpolates ez in k points (counting multiplicities) in
[ |z|�R].

Then, the rational function P� (x, R)�Q� (x, R) interpolates e2Rx in at least k
points of [&1, 1], counting multiplicities.

The fourth reminder concerns various results about rational interpola-
tion of the exponential function on the real line.

Theorem 3.4 (cf. [2, Theorem 2.1]). Let B(m+n) :=[x (m+n)
k ]m+n+1

k=0 ,
m=m& , n=n& be a triangular sequence of (not necessarily distinct) real
interpolation points contained in the interval [&R, R] such that

lim
& � �

m&+n&=�, (3.2)
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and denote by R� m, n=P� m, n �Q� m, n the rational function of type (m, n) that
interpolates ez in B(m+n). Then

lim
& � �

R� m& , n&
(z)=ez (3.3)

locally uniformly in C. Furthermore, if (m, n) is a ray sequence,

lim
& � �

m&

n&
=* (0�*�+�), (3.4)

then we also have, as & � �,

P� m& , n&
(z) � e*z�(1+*) and Q� m& , n&

(z) � e&z�(1+*) (3.5)

locally uniformly in C, where Q� m& , n&
is normalized so that Q� m& , n&

(0)=1.

Estimates on the zeros and poles of R� m, n are reminded in the next
proposition.

Proposition 3.5 (cf. [2, Proposition 2.8]). With the same assumptions
as in Theorem 3.4, all zeros of Q� m, n , say a (n)

k , satisfy

m+1&R�|a (n)
k |, k=1, ..., n. (3.6)

Symmetrically, all zeros of P� m, n , say b (m)
j , satisfy

n+1&R�|b (m)
j | , m�1, j=1, ..., m. (3.7)

Moreover, all zeros a (n)
k and b (m)

j lie within the corona

(m+n) #&R�|z|�m+n+R+4�3, m�1, (3.8)

where #&0.278 is the unique positive root of #e1+#=1, and respectively
remain within R units distance from the zeros of the Pade� denominator and
numerator to the exponential function.

Proof. These estimates follow from those corresponding to the Pade�
approximants P0

m, n �Q0
m, n where R=0 (cf. [24, Theorem 22]) and Walsh's

theorem 3.1, see the proof of [2, Lemma 2.4(i)]. Actually, we shall use the
same proof in Step 1 of the forthcoming derivation of Theorem 2.1. K

We also need to consider the polynomials P� m, n and Q� m, n which are
obtained upon dividing P� m, n and Q� m, n by the leading coefficient of the
latter. Hence, Q� m, n is monic. In the next lemma, which display estimates on
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the leading and constant coefficients of P� m, n and Q� m, n , we need to keep
track of the interpolation scheme. We use a superscript for this purpose.
The scheme &B refers to the negatives of the points of B.

Lemma 3.6 (cf. [2, Lemma 2.5]). Let m=m& , n=n& , satisfy (3.2) and
(3.4). Define p~ B

m, n to be the leading coefficient of P� B
m, n . For any real number

0<'<1, we have

'e&R�(1+*)�(&1)n m !
(m+n)!

Q� B
m, n(0)�

1
'

eR�(1+*) (3.9)

as soon as & is large enough. Similarly, for any 0<'$<1, we have

'$
(&1)n Q� B

m, n(0)

(&1)m Q� &B
n, m(0)

�(&1)n p~ B
m, n�

1
'$

(&1)n Q� B
m, n(0)

(&1)m Q� &B
n, m(0)

, (3.10)

as soon as & is large enough.

Finally, we shall also use the following version of Rolle's theorem in the
complex domain. Here, the result is stated for expressions of the type
Q(z) ez&P(z), but a similar assertion holds more generally for any real
exponential polynomials (see [35]).

Theorem 3.7 (cf. [35, Theorem 3.2]). Let =, l and \<2? be three real
positive numbers. Let (g&)& # N , be a sequence of real exponential polynomials
such that

g&(z)=Qm& , n&
(z) ez&Pm& , n&

(z), deg Pm& , n&
=m& , deg Qm& , n&

=n&

and

lim
& � �

m&+n&=�.

Furthermore, let r& be a sequence of integers with 1�r&�m&+1, satisfying

4 \1&
\
2

cot
\
2+< inf

& # N

m&+n&+2&r&

r&+1
. (3.11)

For each &, assume that g& has L&�m&+n&+1 zeros in the domain Ll, \, 1 .
Then, there exists a positive integer C depending on =, l and \ such that the
r&-th derivative g (r&)

& of g& has at least L&&r& zeros in the domain Ll, \+=, r&+1 ,
as soon as the degree of g& is larger than C.
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Moreover, if

lim
& � �

r&=� and lim
& � �

m&+n&

r&
=+ (1�+��), (3.12)

assumption (3.11) in the previous assertion may be replaced with

4 \1&
\
2

cot
\
2+<+&1. (3.13)

4. PROOFS

We are now in a position to demonstrate the results stated in Section 2.

Proof of Theorem 2.1. We perform the proof in three steps.

Step 1: On the location of the zeros and poles of the interpolants. Recall
that the polynomials Pm, n and Qm, n satisfy (2.2), where the roots of
|m+n+1 all lie in the bounded strip Ll, \, 1 , \<2?, and that the degrees
m=m& , n=n& satisfy condition (2.3). We split the sequence (m& , n&) into
two subsequences with indices & # I1 or & # I2 , I1 _ I2=N, in the following
way. The first subsequence corresponds to indices & # I1 such that the
maximum in the right-hand side of (2.3) is taken by the ratio n&+1�m&+2,
while the second one corresponds to indices & # I2 such that the maximum
is taken by the ratio m&+1�n&+2. We consider these two subsequences
separately.

For the first subsequence, Theorem 3.7 applies with g&(z)=Qm& , n&
(z) ez&

Pm& , n&
(z) and r&=deg Pm& , n&

+1. It shows that the derivative

g(deg Pm& , n&
+1)

& =((I+D)deg Pm& , n&
+1Qm& , n&

) ez,

where D denotes differentiation, has m&+n&&deg Pm& , n&
zeros in the

domain Ll, \+=, deg Pm& , n&
+2 , =>0, and & # I1 large. Since

sn&
:=(I+D)deg Pm& , n&

+1Qm& , n&

is a polynomial of degree equal to the degree of Qm& , n&
, we deduce that

deg Qm& , n&
�m&+n&&deg Pm& , n&

.

Hence Pm& , n&
and Qm& , n&

cannot be of degree less than m& and n& respec-
tively. This proves assertion (i) for & # I1 . Moreover, since all the zeros of
the polynomial sn&

lie in the domain Ll, \+=, m&+2 , & # I1 large, they all lie a
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fortiori interior to the closed disk D(0, (\+=) - m&+2+l ), whose radius
equals half the diameter of Ll, \+=, m&+2 . Now, writing the Taylor expansion

(1+x)&(m&+1)= :
�

j=0

(&1) j \m&+ j
m& + x j,

we get

Qm& , n&
= :

n&

j=0

(&1) j \m&+ j
m& + s ( j)

n&
,

where we have used the fact that sn&
is a polynomial of degree n& . Then,

one checks easily that Theorem 3.1 applies with f (z)=sn&
(z), g(z)=

Q0
m& , n&

(z)�n& ! and h(z)=Qm& , n&
(z), where Q0

m& , n&
denotes the monic Pade�

denominator. From (3.8) where we take \=0, we know that the zeros of
Q0

m& , n&
have modulus larger than or equal to (m&+n&) #, thus, by Walsh's

theorem, all the zeros of Qm& , n&
have modulus larger than or equal to

(m&+n&) #&(\+=) - m&+2&l. Hence, in view of (2.1), all the zeros of
Qm& , n&

tend to infinity as & # I1 becomes large.
For the second subsequence, Theorem 3.7 applies with Qm& , n&

(&z)&
ezPm& , n&

(&z) and r&=deg Qm& , n&
+1. Reasoning as in the previous case

shows that deg Pm& , n&
=m& , deg Qm& , n&

=n& , so that assertion (i) of
Theorem 2.1 is proved for any & # N large. It also shows that all zeros
of Pm& , n&

have modulus larger than or equal to (m&+n&) #&
(\+=) - n&+2&l for & # I2 large. In view of (2.1), we deduce this time that
all the zeros of Pm& , n&

tend to infinity as & # I2 becomes large.

Step 2: Locally uniform convergence of the rational interpolants. By
assumption, all interpolation points lie in the disk D(0, \~ ) with \~ =l+\.
We show that the rational interpolants Rm, n are near-best approximants i.e.
satisfy, for any R�\~ , and any given 0<$<1,

&Qm, nez&Pm, n&R�&Qm, n &R Em, n(ez, R)1&$, (4.1)

m+n large enough. This is essentially well known (cf. [11, 14, 32]) for any
function admitting faster than geometric rational approximation or, equiv-
alently, functions belonging to the Gonchar�Walsh class, but we prefer to
include a proof for completeness. We denote by R*m, n=Q*m, n �P*m, n , a
rational best approximant of type (m, n) to ez on the closed disk
D(0, R+'), where '>0. We have

Q*m, n(Qm, nez&Pm, n)

=Q*m, nQm, n(ez&R*m, n)+(Qm, n P*m, n&Q*m, nPm, n),
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where the last term in the right-hand side is a polynomial of degree at most
m+n. Hence, dividing this equality by the polynomial of interpolation
|m+n+1 , and applying Cauchy's formula on the circle TR+' , we get for z
inside TR+' ,

Q*m, n(z)
Qm, nez&Pm, n

|m+n+1

(z)=
1

2i? |
TR+'

Q*m, nQm, n(ez&R*m, n)(t)
|m+n+1(t)(t&z)

dt.

Since the roots of |m+n+1 remain in the disk D(0, \~ ), there exists a
constant C1 such that

&|m+n+1&R� min
t # TR+'

||m+n+1(t)|�C m+n+1
1 .

Moreover, as all zeros of Q*m, n lie outside the disk D(0, R+'), there exists
a constant C2 such that

&Q*m, n&R+' �min
z # TR

|Q*m, n(z)|�C n
2 .

Thus, we obtain

&Qm, nez&Pm, n&R �C3C m+n+1
1 C n

2 &Qm, n &R+' Em, n(ez, R+')

�&Qm, n&R Em, n(ez, R)1&$.

In the second inequality, we have used Bernstein inequality for comparing
the norm of the polynomial Qm, n on the circles of radius R and R+', and
the fact that (cf. Theorem 3.2)

lim
m+n � �

Em, n(ez, R)1�(m+n)=R lim
m+n � �

$1�(m+n)
m, n =0,

where the last equality is easily checked from the definition (2.9) of $m, n .
This proves (4.1). Let us observe that the inequality

&Pm, ne&z&Qm, n&R�&Pm, n&R Em, n(ez, R)1&$, (4.2)

m+n large enough, can be obtained in the same way we proved (4.1), since
Qm, n �Pm, n(&z) is a linearized rational interpolant to ez in the points
opposite to those of B(m+n).

Now, as in Step 1, we split the sequence (m& , n&) into the two sub-
sequences with indices & # I1 and & # I2 respectively. Let us first consider the
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subsequence with indices & # I1 . For any disk D(0, R), R>\~ , we deduce
from (4.1) that

&ez&Pm, n�Qm, n&R�
&Qm, n&R

minz # TR
|Qm, n(z)|

Em, n(ez, R)1&$.

For & # I1 large, the right-hand side tends to zero. Indeed, by the result of
Step 1, we know that the roots of Qm, n become of modulus larger than
R$>R, hence there exits a constant C such that the ratio in the right-hand
side is less than Cn. This implies the uniform convergence of Rm, n to ez in
any compact set of C, hence proves (2.4) when & # I1 . As a consequence of
this convergence, we deduce also that all the zeros of Pm, n tend to infinity
for & # I1 large.

For the second subsequence with indices & # I2 , we deduce from (4.2)
that

&e&z&Qm, n �Pm, n&R�
&Pm, n&R

minz # TR
|Pm, n(z)|

Em, n(ez, R)1&$,

for any disk D(0, R), R>\~ . For & # I2 large, the right-hand side tends to
zero since we know by the result of Step 1 that the roots of Pm, n become
of modulus larger than R$>R. This implies the uniform convergence of
1�Rm, n to e&z in any compact set of C. Consequently, all the zeros of Qm, n

tend to infinity for & # I2 large, and Rm, n converges locally uniformly to ez

in C. So far, we have proved assertions (i), (ii), and (iii) of Theorem 2.1.
If (2.5) holds, it remains to show the separated convergence of Pm, n and
Qm, n . This is the goal of the next step.

Step 3: Applying Newman's technique. By the uniform convergence of
the interpolants Rm, n established in Step 2, condition (i) of Theorem 3.3
is satisfied in the disk D(0, \~ ), \~ =l+\, for & large. It also implies that
condition (ii) is met on the circle T\~ , for & large. Moreover, by assumption,
condition (iii) is satisfied in D(0, \~ ) as well. We set

P� m(x)=|Pm, n(\~ `)|2, Q� n(x)=|Qm, n(\~ `)| 2, |`|=1, x # Re(`), (4.3)

and apply Theorem 3.3 on D(0, \~ ): the rational function R� m, n(z)=P� m �
Q� n(z) interpolates e2\~ z at m+n+1 points of [&1, 1]. Thus, P� m �Q� n(z�2\~ )
interpolates ez at m+n+1 points of [&2\~ , 2\~ ], and we deduce from
Theorem 3.4 that

R� m, n(z) � e2\~ z,
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locally uniformly in C, and moreover that

P� m(z)�Q� n(0) � e2\~ *z�1+* and Q� n(z)�Q� n(0) � e&2\~ z�1+* (4.4)

locally uniformly in C, since we are assuming that (2.5) holds. Denoting by
a(n)

k , the zeros of Q� n(z), k=1, ..., n, we see from the first inequality in (3.8)
that

(m+n) #&2\~ �|2\~ a (n)
k |, k=1, ..., n. (4.5)

Moreover, from (4.3), we know the relation between the zeros :(n)
k of Qm, n

and the zeros of Q� n ,

2a(n)
k =

: (n)
k

\~
+

\~
: (n)

k

, k=1, ..., n. (4.6)

The inequality (4.5), the relations (4.6), and the fact that the polynomial
Qm, n has no zeros near the origin implies that, for & large,

(m+n) #�:�|: (n)
k |, k=1, ..., n, (4.7)

where : is any real number :>1. We prove that (Qm, n) is a normal family.
Indeed, when & is large enough,

|Qm, n(z)|= `
n

k=1

|1&z�: (n)
k |�(1+: |z|�(m+n) #)n�e: |z|�#.

Note that Qm, n is normalized so that Qm, n(0)=1, which is possible as, by
assumption, Qm, n has no zeros in a neighborhood of the origin, & large. In
addition, from the definition (4.3) of Q� n , we get that

Q� n(0)=|Qm, n(i\~ )|2= `
n

k=1

(1+\~ 2�: (n)2

k )

is bounded from below by some positive constant, thanks to (4.7). Hence

hn=Qm, n �- Q� n(0)

again defines a normal family of functions. Let h=limk � � hnk
be a limit

function of this family, and notice that, on T\~ ,

|h(`)|2= lim
k � �

Q� nk
(Re(`)�\~ )�Q� nk

(0)=|e&2`�1+*|

by (4.4). This entails that h does not vanish identically, and as hn is zero-
free in D(0, (m+n) #�:) for n large by (4.7), we derive from Hurwitz's
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theorem that h is zero-free in C. Therefore h=e&z�1+*, because these two
functions share the same modulus on T\~ , have no zeros in D(0, \~ ), and
h(0)>0. Thus, hn actually converges to e&z�1+* since this is the only
possible limit function. As Qm, n(0)=1 for all indices &, we now deduce that
Q� n(0) � 1 so that Qm, n(z) � e&z�1+* as & � �, locally uniformly in C. The
uniform convergence of Pm, n to e*z�1+* in any compact set of C follows
from the above convergence of Qm, n and the locally uniform convergence
of Rm, n to ez in C. This proves (2.6) and finishes the proof of
Theorem 2.1. K

Proof of Proposition 2.2. We apply Theorem 3.3 on the disk D(0, \~ ) as
we did in Step 3 of the proof of Theorem 2.1. Recall the definition (4.3) of
the polynomial Q� n(z). Since P� m �Q� n(z�2\~ ) interpolates ez at m+n+1
points of the segment [&2\~ , 2\~ ], we know that the zeros of the polyno-
mial Q� n(z�2\~ ) satisfy the assertions of Proposition 3.5 with R replaced with
2\~ . Multiplying by \~ the relation (4.6) between the zeros : (n)

k of Qm, n and
the zeros a (n)

k of Q� n , we get

2\~ a(n)
k =: (n)

k +
\~ 2

: (n)
k

, k=1, ..., n.

On the other hand, from the estimates (3.8), there exists two constants C1

and C2 such that

C1(m+n)�|a (n)
k |�C2(m+n), k=1, ..., n,

and since Qm, n does not vanish near the origin similar inequalities hold for
its zeros. Thus,

2\~ a (n)
k =: (n)

k +O(1�(m+n)), k=1, ..., n,

whence the asserted inequalities and assertion for the zeros of Qm, n since
the left-hand side of the previous relations are equal to the zeros of
Q� n(z�2\~ ). The corresponding estimates for the zeros of the polynomial Pm, n

follow in a similar way from the remark that Qm, n �Pm, n interpolates ez at
the negative of the points of B(m+n). K

Proof of Theorem 2.3. The technique is borrowed from [5] and was
also used in [2]. As a first step, we will treat the diagonal case and write
Rj=Pj �Q j for the multipoint interpolant of type ( j, j ). Moreover, for j
large, we will assume that Qj is normalized to be monic. Note that, by asser-
tion (i) of Theorem 2.1, this is always possible. Since several interpolation
schemes enter into the proof, we shall keep track of them by using a super-
script as in (3.9) and (3.10). As in [5] and [2], we consider for each
positive n the triangular interpolation scheme Cn whose (2n+2k)th row is
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obtained by adding to the set B(2n)=[z (2n)
i ]2n

i=0 the point zero with multi-
plicity 2k for k�0, while the first 2n&1 rows can be chosen arbitrarily in
D(0, \~ ). This defines a family of interpolation schemes indexed by n, and it
is important to notice that B(2n)=C (2n)

n for each n. With the scheme Cn , we
consider the rational interpolants RCn

n+k , k�0, of type (n+k, n+k) which
still define a ray sequence with *=1. By assertion (iii) of Theorem 2.1 as
applied to Cn , we have that for any z # C,

ez&RB
n (z)= :

�

k=0

[RCn
n+k+1(z)&RCn

n+k(z)]. (4.8)

From the interpolation conditions and upon checking degrees, we get the
following factorization:

Dk(z) :=RCn
n+k+1(z)&RCn

n+k(z)=
;k+1z2k >2n

i=0(z&z (2n)
i )

QCn
n+k(z) QCn

n+k+1(z)
, (4.9)

where ;k+1 is the leading coefficient of PCn
n+k+1QCn

n+k&PCn
n+k QCn

n+k+1 . As
the polynomials QCn

n+k and QCn
n+k+1 are monic, we have

;k+1= pCn
n+k+1& pCn

n+k , (4.10)

where pCn
n+k and pCn

n+k+1 denote the leading coefficients of PCn
n+k and

PCn
n+k+1 , respectively.
We derive first the upper estimate in (2.8). Since Cn is a scheme satisfying

the assumptions of Theorem 2.1 and RCn
j is a ray sequence with *=1, we

obtain from the limit (2.4) and the second limit in (2.6) that for any
0<$<1 and j large enough

PCn
j (0)

QCn
j (0)

�$,
|QCn

j (0)|

|QCn
j (i\~ )|

�$, (4.11)

and

|QCn
j (z)|�

$ |QCn
j (0)|

- c1

, z # K. (4.12)

Moreover, it is clear from Theorem 2.1 that the three conditions of
Theorem 3.3 are met with the interpolant RCn

j , j large enough. Hence, when
n is fixed and j=n+k is large enough, (4.11), (4.12) hold true and
Theorem 3.3 applies. We claim there exists n0 such that the previous asser-
tion holds true for any scheme Cn and all k�0, as soon as n is larger than
n0 . Indeed, assume the contrary. Then, we can find a sequence n$+k$ with
n$ � � and k$�0 such that the interpolant RCn$

n$+k$ constantly violates the
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assertion. But the scheme obtained by selecting for each pair of indices
(n$, k$), the row C (2n$+2k$)

n$ is again a ray sequence of interpolation points in
D(0, \~ ) to which our analysis can be applied. This proves the claim by
contradiction.

Now, let us denote by R� C� n
j =P� C� n

j �Q� C� n
j , the rational function of type ( j, j)

such that

P� C� n
j (2\~ x)=|PCn

j (\~ `)|2, Q� C� n
j (2\~ x)=|QCn

j (\~ `)|2, |`|=1, x=Re(`),

which, from Theorem 3.3, interpolates ez in 2 j+1 points of [&2\~ , 2\~ ], as
soon as n>n0 and k�0. Observe that, by definition, the scheme C� n has its
(2 j)-th row, j�n, consisting of these 2 j+1 points. Let p̂C� n

j and q̂C� n
j denote

the leading coefficients P� C� n
j and Q� C� n

j . From the previous relations, we check
that

p̂C� n
j =PCn

j (0) pCn
j , q̂C� n

j =QCn
j (0), (4.13)

recalling that QCn
j has been chosen to be monic. As in Theorem 3.4, we

denote by P� C� n
j and Q� C� n

j the polynomials which are obtained upon dividing
P� C� n

j and Q� C� n
j by the leading coefficient of the latter, so that

p~ C� n
j = pCn

j PCn
j (0)�QCn

j (0), (4.14)

where p~ C� n
j denotes the leading coefficient of P� C� n

j . Moreover, by the second
inequality in (3.10), we know that for any 0<'$<1 we have

(&1) l p~ C� n
j �

1
'$

Q� C� n
j (0)

Q� &C� n
j (0)

(4.15)

for j large enough. Using the lower estimate in (3.9) for the real schemes
C� n and &C� n in [&2\~ , 2\~ ], we further obtain that for any 0<'<1

'e&\~ �(&1) j j !
(2 j)!

Q� C� n
j (0), 'e&\~ �(&1) j j !

(2 j)!
Q� &C� n

j (0), (4.16)

for j large. Reasoning by contradiction as we did after (4.12), we get that
there exists n1 such that the inequalities (4.15) and (4.16) hold true for any
scheme C� n and all j=n+k�n, as soon as n is larger than n1 .

Now, from the inequalities (4.11), (4.12), (4.15), and the relation (4.14)
where we substitute n+k and then n+k+1 for j, we get in view of (4.9)

|Dk(z)|�
c1

'$$3 _}Q� C� n
n+k+1

(0)

Q� &C� n
n+k+1(0) }+ }Q� C� n

n+k(0)

Q� &C� n
n+k(0) }& }

z2k >2n
i=0 (z&z (2n)

i )
QCn

n+k(0) QCn
n+k+1(0) } ,

(4.17)
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as soon as n>max(n0 , n1) and k�0. On the other hand, from the second
inequality in (4.11), the definition of Q� C� n

j , Q� C� n
j , and the second equality in

(4.13), we obtain successively

(QCn
j (0))2�$2 |QCn

j (i\~ )|2=$2Q� C� n
j (0)=$2Q� C� n

j (0) q̂C� n
j

=$2Q� C� n
j (0) QCn

j (0). (4.18)

Dividing by the absolute value of QCn
j (0), we get

|QCn
j (0)|�$2 |Q� C� n

j (0)|.

Making use of this inequality in (4.17), we deduce

|Dk(z)|�
c1

'$$7 _} 1

Q� C� n
n+k(0) Q� &C� n

n+k+1
(0) }+ } 1

Q� C� n
n+k+1(0) Q� &C� n

n+k(0) }&
_|z|2k `

2n

i=0

|z&z (2n)
i |

as soon as n>max(n0 , n1) and k�0. Making use of (4.16), we now obtain

|Dk(z)|�2
e2\~ c1

'$$7'2

(n+k+1)! (n+k)!
(2n+2k+2)! (2n+2k)!

|z|2k `
2n

i=0

|z&z (2n)
i |,

as soon as n is large enough and for all k. Note that

(n+k+1)! (n+k+2)!
(2n+2k+2)! (2n+2k+4)!

|z|2k+2< (n+k)! (n+k+1)!
(2n+2k)! (2n+2k+2)!

|z| 2k

�
|z|2

16(n+k)2�
M2

16(n+k)2 ,

where M=maxz # K |z|. Suppose that n is so large that M2�16n2�1. Then,
with :$='$'2$7<1,

|ez&RB
n (z)|� :

�

k=0

|Dk(z)|

�
2e2\~ c1

:$
n !(n+1)!

(2n)! (2n+2)! _1+ :
�

k=1

M2

16(n+k)2&_ `
2n

i=0

|z&z (2n)
i |.

(4.19)
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As �k 1�(n+k)2 is the tail of a convergent series, the quantity

_1+ :
�

k=1

M2

16(n+k)2&<:$

can be made arbitrarily close to 1 by choosing ', '$ and $ close enough to
1 and n sufficiently large. Hence, we get that for any :<1 and n large
enough

|ez&RB
n (z)|�

c1e2\~

:
n ! n !

(2n)! (2n+1)!
`
2n

i=0

|z&z (2n)
i |,

which is our claimed upper estimate for *=1.
Let us now proceed with the lower estimate in (2.8). We have

|ez&RB
n (z)|�|D0(z)|& :

�

k=1

|Dk(z)|.

By Theorem 2.1, for any 0<$<1, j large, we have

PCn
j (0)

QCn
j (0)

�
1
$

,
|QCn

j (0)|
|QCn

j (i\~ )|
�

1
$

, (4.20)

and

|QCn
j (z)|�

1

$ - c0

|QCn
j (0)| z # K.

Note that from the second inequality in (4.20) and the chain of equality in
(4.18), we deduce that

|QCn
j (0)|�|Q� C� n

j (0)|�$2.

From (3.9) we observe that for any 0<'<1, j large,

} j !
(2 j)!

Q� C� n
j (0)}�e\~

'
, } j !

(2 j)!
Q� &C� n

j (0)}�e\~

'
.

Moreover, from (3.10), we get for any 0<'$<1 and j=n+k large

'$
Q� C� n

j (0)

Q� &C� n
j (0)

�(&1) j p~ Cn
j .
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Reasoning as before, these estimates can be made uniform with respect to
n when the latter is sufficiently large and yield together with relation (4.14)

|D0(z)|�2'$'2$7c0 e&2\~ n !(n+1)!
(2n)! (2n+2)!

`
2n

i=0

|z&z (2n)
i |

='$'2$7c0e&2\~ n ! n !
(2n)! (2n+1)

`
2n

i=0

|z&z (2n)
i |. (4.21)

On the other hand, we know that for large n (cf. (4.19))

:
�

k=1

|Dk(z)|�
c1 e2\~

:$
n !n !

(2n)! (2n+1)! _1+ :
�

k=1

M2

16(n+k)2& `
2n

i=0

|z&z (2n)
i |.

As the term in (4.21) is dominant compared to the above summation, we
get that for any :<1 and n large enough

|ez&RB
n (z)|�:c0e&2\~ n ! n !

(2n)! (2n+1)!
`
2n

i=0

|z&z (2n)
i | ,

thereby establishing (2.8) in the diagonal case.
The general case where the rational function is of type (m, n) with

m=m& , n=n& satisfying (2.1), (2.5) and (2.7) can be handled in a similar
way. It consists in decomposing, as in equality (4.8), the error ez&RB

m, n(z)
as a sum of differences by introducing schemes Cm, n whose (m+k1)+
(n+k2)-rows are obtained by adding the point zero with multiplicity
k1+k2 to the set B(m+n). As in the diagonal case, we also use Theorem 3.3
in order to exhibit rational interpolants on the segment [&2\~ , 2\~ ] to
which the estimates in Lemma 3.6 can be applied. For more details, the
interested reader may consult the proof of Theorem 2.2 in [2], where the
same technique is applied for general ray sequences with respect to rational
interpolants on finite segments of the real axis. K

Proof of Theorem 2.4. It can be done by contradiction and is identical
to that of [2, Theorem 2.3]. Hence, we refer to [2] for the full proof.
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